		_
Manufacturer		DAIKI
Außengerät		4MXM80A2V1B
Innengerät		FTXA20A2V1BW
Innengerät		FTXA42A2V1BW
Innengerät		FTXA42A2V1BW
Außenschallleistungspegel (dB)	dB(A)	
Innenschallpegel	dB(A)	60.0
Das Kältemittel (GWP)		R-32 (675)
Kühlbetrieb		
SEER		8.0
Energieeffizienzklasse		A++
Jährlicher Energieverbrauch	kWh/a	381.0
Entwurfslast Pdesignc	kW	8.7
Heizbetrieb: Durchschnittliches Klima Entwurfstemperatur = -10 °C		
SCOP		4.13
Energieeffizienzklasse		A+
Jährlicher Energieverbrauch	kWh/a	2111.0
Entwurfslast Pdesignh bei -10 °C	kW	6.229999999999999
Notwendige reserheizerleistung bei -10 $^{\circ}\mathrm{C}$	kW	1.409278846153847
Deklarierte Leistung bei -10 °C	kW	4.821
Heizbetrieb: Warmes Klima Entwurfstemperatur = 2 °C		
SCOP		5.88
Energieeffizienzklasse		A+++
Jährlicher Energieverbrauch	kWh/a	952.0
Entwurfslast Pdesignh bei 2 °C	kW	4.0
Notwendige reserheizerleistung bei 2 °C	kW	0.0
Deklarierte Leistung bei 2 °C	kW	4
Heizbetrieb: Kaltes Klima Entwurfstemperatur = -22 °C		
SCOP		
Energieeffizienzklasse		
Jährlicher Energieverbrauch	kWh/a	
Entwurfslast Pdesignh bei -22 °C	kW	
Notwendige reserveheizerleistung bei -22 $^{\circ}\mathrm{C}$	kW	
Deklarierte Leistung bei -22 °C	kW	

Refrigerant leakage contributes to climate change. Refrigerant with lower global warming potential (GWP) would contribute less to global warming than a refrigerant with higher GWP, if leaked to the atmosphere. This appliance contains a refrigerant fluid with a GWP equal to 675. This means that if 1 kg of this refrigerant fluid would be leaked to the atmosphere, the impact on global warming would be 675 times higher than 1 kg of CO2, over a period of 100 years. Never try to interfere with the refrigerant circuit yourself or disassemble the product yourself and always ask a professional.

^{*2} Energ everbrauch auf der Grundlage von Standard-Testergebnissen. Der tatsächliche Energieverbrauch hängt davon ab, wie das Gerät verwendet wird und wo es aufgestellt ist.